Точность ТН зависит от индуктивности рассеяния, сопротивления обмотки, коэффициента трансформации и тока возбуждения при частоте питающей сети. Повреждение сердечника, деформация обмоток и общее старение могут изменить погрешность ТН. Кроме того, измерение на месте эксплуатации характеристик возбуждения ТН может представлять интерес для анализа феррорезонанса или создания программ моделирования.
Комплекс международных стандартов (IEC, IEEE, ANSI) определяет точность и ее пределы для традиционных ТН: индуктивных (ИТН) [1, 3, 5] и емкостных (ЕТН) [2, 4, 5, 6]. Согласно этим стандартам ТН должен соответствовать требованиям к точности в определенном количестве рабочих точек.
Для измерительных обмоток ТН должен работать в своем классе точности в диапазоне 80–120% номинального напряжения первичной обмотки и 25–100% номинальной вторичной нагрузки. Для обмоток классов 0,1 и 0,2, с номинальной нагрузкой 10 ВА или меньше, погрешность коэффициента и фазовые сдвиги определены даже для мощности 0 ВА при разомкнутой цепи. У обмотки для подключения устройств релейной защиты погрешность коэффициента трансформации и фазовый сдвиг должны соответствовать классу ТН в диапазоне от 2 до 100% · номинального напряжения первичной обмотки, где – коэффициент и может составлять до 1,9 номинального напряжения. Диапазон нагрузок варьируется от 25 до 100% от номинальной нагрузки. Кроме того, для ТН, имеющих более одной вторичной обмотки, необходима проверка класса точности, когда другие обмотки работают и в режиме холостого хода (0 ВА), и в режиме номинальной нагрузки.Ранее точное испытание ТН на месте эксплуатации было непростой задачей, требующей больших финансовых и временных затрат. Необходимы были сложные системы, включая источник высокого напряжения, образцовый ТН, набор стандартных нагрузок, измерительные мосты и т. д. Менее масштабные решения не обеспечивали необходимую точность измерения или не позволяли учесть различные нагрузки. Поэтому компания OMICRON разработала новый способ испытания ТН.
Работа анализатора VOTANO 100 (рис. 1) основана на построении модели ТН. Моделирование позволяет вычислять класс точности путем применения схемы Меллингера-Гевеке. Для реализации этого метода необходимо знание параметров эквивалентной схемы замещения. Параметры определяются при помощи электрических измерений со стороны низкого и высокого напряжения ТН. Для измерения применяются низкие частоты, что позволяет использовать в процессе испытаний низкую мощность и низкие напряжения.Для надлежащего применения метода моделирования необходимо определить следующие характеристики ТН:
- реактивное сопротивление утечки первичной и вторичной обмотки (вторичные потери рассеяния);
- сопротивление первичной и вторичной обмотки (вторичные потери рассеяния);
- потери на возбуждение (потери в стальном сердечнике).
- напряжение на сердечнике (ЭДС – электродвижущая сила);
- вторичное напряжение на обмотке 1a–1n;
- первичный ток;
- ток возбуждения;
- ток нагрузки на обмотке 1a–1n;
- ток нагрузки на обмотках xa–1n;
- сопротивление первичной обмотки;
- сопротивление вторичной обмотки 1a–1n;
- сопротивление обмоток xa–1n;
- реактивное сопротивление утечки вторичной обмотки 1a–1n;
- реактивное сопротивление утечки обмоток xa–1n;
- индуктивность сердечника;
- потери сердечника на намагничивание
Для определения отдельных видов потерь необходимо провести несколько испытаний, поэтому с помощью VOTANO 100 необходимо измерить:
- импедансы в режиме КЗ;
- сопротивление вторичных обмоток;
- импеданс вторичной цепи в режиме КЗ (если число вторичных обмоток более одной);
- кривую намагничивания и разделений частотнозависимых потерь в сердечнике;
- витковый коэффициент трансформации.
Измерение импедансов в режиме КЗ выполняется с короткозамкнутой первичной обмоткой (рис. 4, 5). На вторичную обмотку подают сигнал переменного тока и регистрируют падение напряжения на клеммах. Измерение повторяют для каждой вторичной обмотки. Полученный импеданс – это комбинация первичных и вторичных потерь рассеяния:
Измерение корректировки коэффициента трансформации выполняется для учета возможной компенсации корректировки. Компенсирование погрешности коэффициента трансформации для получения более положительной погрешности – общепринятая практика, чтобы удержать ТН в пределах допусков, соответствующих его классу точности.
Измерение коэффициента трансформации на ИТН, имеющем функцию корректировки этого коэффициента для компенсации погрешности. Физически погрешность коэффициента трансформации всегда отрицательная, если у ТН нет корректировки, сдвигающей погрешность коэффициента в направлении положительного значения.
При измерении коэффициента трансформации 4 кВ подается на первичную обмотку, при этом вторичное напряжение последовательно измеряют на каждой обмотке. Коэффициент трансформации по напряжению измеряется без нагрузки при довольно низком первичном напряжении. Одновременно с помощью математической модели вычисляют теоретическую погрешность коэффициента трансформации по напряжению, исходя из отсутствия корректировки коэффициента. Разность между измеренной погрешностью коэффициента без нагрузки и вычисленной погрешностью коэффициента обусловлена корректировкой коэффициента трансформации ТН.Измерение корректировки коэффициента трансформации на ЕТН проводится в два этапа. На первом общий коэффициент трансформации по напряжению измеряют, прикладывая к первичной обмотке напряжение . Вторичное напряжение измеряют на первой вторичной обмотке (1a–1n). Результат представляет собой коэффициент трансформации по напряжению всего ЕТН, состоящий из коэффициента трансформации по напряжению, обусловленного емкостным делителем и промежуточным индуктивным :
Вычисление погрешности коэффициента трансформации по напряжению и фазового сдвига, зависящих от нагрузки, выпоняется для каждой заданной рабочей точки ТН, определенной в выбранном стандарте, т. к. на этом этапе известны все параметры математической модели.
Ток нагрузки вызывает падение напряжения на паразитном импедансе вторичной цепи. Это падение напряжения добавляют к напряжению на клеммах для вычисления напряжения на сердечнике. Если известно напряжение на сердечнике, то известны и относящиеся к нему результирующий ток возбуждения и его фазовый угол. Эти данные необходимы для вычисления полного тока в первичной обмотке . В зависимости от состояния нагрузки других обмоток их ток нагрузки добавляется к полному току в первичной обмотке. Ток в первичной обмотке вызывает дополнительное падение напряжения на паразитном импедансе первичной цепи. Падение напряжения в первичной цепи добавляют к напряжению на сердечнике для получения первичного напряжения. Погрешность коэффициента трансформации по напряжению вычисляют по первичному напряжению и напряжению на клеммах вторичной обмотки. Так как корректировка коэффициента трансформации известна, вызванное ею смещение добавляют к вычисленной погрешности коэффициента трансформации по напряжению. Вычисление производится в комплексной плоскости, поэтому можно определить также фазовый сдвиг.Результаты испытаний с применением VOTANO 100 близки к эталонным, что позволяет калибровать ТН с классом точности 0,1. Поэтому данное устройство можно использовать как для испытания защитных и измерительных ТН в процессе производства, так и для проверки точности ТН на месте эксплуатации. Прежде чем впервые вводить ТН в эксплуатацию, его необходимо испытать, подавая в первичную обмотку номинальное напряжение.
Пример измерения на ТН 66 кВ относится к испытанию ТН в диапазоне 66–132 кВ на месте эксплуатации. На вторичной обмотке есть два ответвления для адаптации коэффициента трансформации по напряжению между 132 кВ/ :110 В/ и 66 кВ/ :110 B/ . Точность данного трансформатора: ±0,03% для коэффициента трансформации и ±1,5 мин. для фазового сдвига при номинальной нагрузке 1 ВА с коэффициентом мощности 1,0 в диапазоне от 50 до 125% номинального напряжения первичной обмотки. Точность ТН определена для 50 и 60 Гц. Испытание ТН было проведено несколько раз, чтобы убедиться в стабильности результатов для 50 и 60 Гц, а также для обоих возможных коэффициентов трансформации по напряжению. Результаты испытания представляют все комбинации ответвлений (66 кВ/ :110 В/ ) при 50 Гц. По данным в табл. 1,2 и на рис. 6 видно, что погрешность коэффициента трансформации по напряжению находится в необходимых пределах ±0,03% от 80 до 120% номинального напряжения первичной обмотки от 0 до 1 ВА нагрузки.Пример измерения на ТН 4 кВ относится к измерению методом сравнения на ТН с литой изоляцией. Погрешность расширенного измерения UFu для коэффициента трансформации составляет 0,006%, UFu для фазового сдвига составляет 0,4 мин.
- IEC 60044-2 Ed. 1.2 / 2003-02: Instrument Transformers. Part 2: Inductive voltage transformers.
- IEC 60044-5 Ed. 1.0 / 2004-04: Instrument transformers. Part 5: Capacitor voltage transformers.
- IEC 61869-3 Ed. 1.0 / 2011-07: Instrument transformers. Part 3: Additional requirements for inductive voltage transformers.
- IEC 61869-5 Ed. 1.0 / 2011-07: Instrument transformers. Part 5: Additional requirements for capacitor voltage transformers.
- IEEE Std C57.13TM-2008: IEEE Standard Requirements for Instrument Transformers.
- ANSI C93.1–1999: Requirements for Power-Line Carrier Coupling Capacitors and Coupling Capacitor Voltage Transformers (CCVT).
- Bergman A. In situ calibration of voltage transformers on the Swedish national grid: PhD thesis. Upsala, 1994.
- Raetzke S. et al. Condition assessment of instrument transformers using Dielectric Response Analysis. CIGRE, 2012.
- Azcarraga C.G. et al. On-site testing of instrument transformers // Conference on Electrical Insulation and Dielectric Phenomena: Annual Report. 2006.
- VOTANO 100 preliminary user manual.